Response of deep-sea CaCO3 sedimentation to Atlantic meridional overturning circulation shutdown
نویسندگان
چکیده
[1] Changes in the distribution of the preservation and burial of calcium carbonate (CaCO3) in deep ocean sediments and associated atmospheric pCO2 response to the shutdown of the Atlantic meridional overturning circulation (MOC) are examined using an Earth system model. We find that shutdown of the Atlantic MOC forced by the freshwater inflow significantly decreases the CaCO3 content in North Atlantic sediments. This is a consequence of a decrease in bottom-water carbonate ion concentrations and reduction in sea-surface CaCO3 production. The main sedimentary impacts of these two effects are separated in time, however, with reduced CaCO3 production dominating the decrease in CaCO3 burial during the first 1000 years after the forcing is applied. In the absence of significant overturning circulation in the Atlantic, atmospheric pCO2 increases by 11 ppm, largely due to a decrease in POC export and a weakening biological pump. The change in pCO2 induced by reorganization of CaCO3 burial in deep-sea sediments is small, only 1 ppm, because increased preservation of CaCO3 in the Pacific largely efficiently buffers decreased preservation in the Atlantic, leaving the global burial and ocean alkalinity minimally changed at equilibrium.
منابع مشابه
Younger Dryas: A data to model comparison to constrain the strength of the overturning circulation
[1] The University of Victoria Earth System Climate Model (UVic ESCM) is used to compare simulated time series of radiocarbon during the Younger Dryas (YD) with paleoceanographic records. I find that only a complete shutdown and recovery of the Atlantic Meridional Overturning Circulation (AMOC) can simulate both the rise in atmospheric CO2 concentrations seen in ice core records and the peak an...
متن کاملArctic–North Atlantic Interactions and Multidecadal Variability of the Meridional Overturning Circulation
Analyses of a 500-yr control integration with the non-flux-adjusted coupled atmosphere–sea ice–ocean model ECHAM5/Max-Planck-Institute Ocean Model (MPI-OM) show pronounced multidecadal fluctuations of the Atlantic overturning circulation and the associated meridional heat transport. The period of the oscillations is about 70–80 yr. The low-frequency variability of the meridional overturning cir...
متن کاملGlobal Teleconnections in Response to a Shutdown of the Atlantic Meridional Overturning Circulation*
The global response to a shutdown of the Atlantic meridional overturning circulation (AMOC) is investigated by conducting a water-hosing experiment with a coupled ocean–atmosphere general circulation model. In the model, the addition of freshwater in the subpolar North Atlantic shuts off the AMOC. The intense cooling in the extratropical North Atlantic induces a widespread response over the glo...
متن کاملThe Sensitivity of the Atlantic Meridional Overturning Circulation to Freshwater Forcing at Eddy-Permitting Resolutions
The effect of increasing horizontal resolution is examined to assess the response of the Atlantic meridional overturning circulation (AMOC) to freshwater perturbations. Versions of a global climate model with horizontal resolutions ranging from 1.8° (latitude) 3.6° (longitude) to 0.2° 0.4° are used to determine if the AMOC response to freshwater forcing is robust to increasing resolution. In th...
متن کاملActive Pacific meridional overturning circulation (PMOC) during the warm Pliocene
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measure...
متن کامل